JLUG2020 (Dec. 4, 2020)

Storage System at the supercomputer Fugaku

Yuichi Tsujita

Operation and Computer Technologies Division, RIKEN Center for Computational Science (R-CCS)

Outline

- FEFS: Lustre-based file system enhanced by FUJITSU LIMITED
- Storage system at the K computer
- Overview of the supercomputer Fugaku
- Three-level hierarchical storage system
- Monitoring and log collection
- Summary

FEFS: Lustre-based file system enhanced by FUJITSU LIMITED

Introduced FEFS in our site

- FEFS: Fujitsu Exabyte File System
 - Enhanced Lustre by FUJITSU LIMITED
- FEFS based on Lustre ver. 1.8
 - Adopted in the two-level file system of the K computer (hereinafter, "K")
 - High I/O throughput under the huge number of clients
 - Many enhancements to have stable and high performance operations
- FEFS based on Lustre ver. 2.10 (<- Long Term Support)
 - Adopted in the 2nd layer storage system of the supercomputer Fugaku (hereinafter, "Fugaku")
 - Cooperative operation with the 1st layer storage system built by SSDs for high throughput I/O in computing and mitigation of load of the 2nd layer storage system
 - Full deployment and optimization are still in progress.

Notable Features of FEFS

- Enhancements based on Lustre 2.x may contribute to the Lustre community.
 - FUJITSU LIMITED is a member of the community and they will continue to report bug-fixes and feedbacks to the community with cross relationship.
- Own enhancements about RAS, system operability, tolerance under high I/O load, and fair-share management among clients are expected to perform well at the 2nd layer storage system.

Storage system at the K computer

Storage system at the K computer

File staging with two-level local/global file system

MDS for LFS FEFS was used for both LFS and GFS.

(FEFS: Fujitsu Exabyte File System based on Lustre technology)

File Staging

Asynchronous file staging for effective job scheduling and I/O

- Pros:
- ✓ Stable application performance for jobs with the help of overlaps between job executions and file staging
- Cons:
- ✓ Pre-defining file name of stage-in/out operation lacks of usability.
- ✓ Data-intensive application which requires a huge storage space affects system utilization because of waiting stage-in/out processing of other jobs.

Overview of the supercomputer Fugaku

From "K" to "Fugaku"

 Performance of ten racks of "Fugaku" is almost the same performance of "K"(864 racks).

		"Fugaku"	"K"
CPU Architecture		A64FX Arm v8.2-A SVE (512 bit SIMD)	SPARC64VIIIfx
Node	Cores	48	8
	Peak DP performance	2.7+ TF	0.128 TF
	Main Memory	32 GiB	16 GiB
	Peak Memory Bandwidth	1,024 GB/s	64 GB/s
	Peak Network Performance	40.8 GB/s	20 GB/s
Rack	Nodes	384	102
	Peak DP Performance	1+ PF	< 0.013 PF
Process Technology		7 nm FinFET	45 nm

Hardware Configuration of "Fugaku"

From CPU to Rack

11

Courtesy of FUJITSU LIMITED

System Configuration

- 158,976 nodes
- Two types of nodes
 - Compute node and Compute & I/O node connected by Fujitsu TofuD (6D mesh/torus Interconnects)
- 3-level hierarchical storage system
 - 1st layer
 - One of 16 compute nodes (CN),
 called compute & storage I/O node (C & SION),
 has SSD about 1.6 TB
 - Its services
 - Cache for the 2nd layer file system
 - Temporary file systems
 - ✓ Local file system for CNs
 - ✓ Shared file system for a job
 - 2nd layer (~150 PB, multiple volumes)
 - Fujitsu FEFS: Lustre-based file system
 - 3rd layer
 - Cloud storage service

Three-level hierarchical storage system

LLIO: Lightweight Layered I/O Accelerator

Cooperative operations with the 2nd layer storage system

2nd Layer Storage System

- Requirements for the 2nd layer storage system of "Fugaku"
 - High capacity
 - 2. High redundancy
 - 3. High performance
- FEFS: Lustre-based file system provided from FUJITSU LIMITED
 - Many experiences and fruitful knowledge through the K computer operation (~8 years) with the FEFS based on Lustre ver. 1.8
- Installation of FEFS based on Lustre ver.2.10 with enhancements by FUJITSU LIMITED for the 2nd layer storage system of "Fugaku"
 - RAS (e.g., High availability)
 - QoS
 - Optimized I/O performance
 - Storage management, etc.

Optimizations and parameter setting are in progress.

I/O nodes and Interconnects

- I/O nodes and interconnects associated with the 2nd layer storage system
 - "C & SION", "C & GION"
 - TofuD among "C & SION", "C & GION", and "C & BION"
 - InfiniBand among "C & GION" and the 2nd layer storage system
- Activities of interconnects and I/O nodes impact performance of the storage system
 - Monitoring activities of those components with I/O performance/metrics of the storage system would be useful according to our experience at the K computer.
 - Y. Tsujita, "Characterizing I/O Optimization Effect Through Holistic Log Data Analysis of Parallel File Systems and Interconnects," LNCS 12321, pp. 177–190 (2020)

Monitoring and log collection

Monitoring and Log Collection

- Monitoring and log collection of "Fugaku" (in progress) *
 - Log and metric collection
 - Log collection
 - Logstash/Filebeat
 - Metric collection
 - Prometheus
 - Monitoring/alerting and analysis
 - Database
 - Elasticsearch, PostgreSQL
 - Monitoring/alerting
 - Prometheus
 - Visualization
 - kibana, redash, Grafana

- Node metrics of MDS, MGS, OSS by node_exporter
 CPU, memory, disk, network, ···
- Lustre(FEFS) metrics by <u>lustre_exporter</u> **
 Bandwidth, IOPS, Stats, ···
- and, more ···

^{*} K. Yamamoto, "Operational Data Processing Pipeline," BoF: Operational Data Analytics@SC'19 https://eehpcwg.llnl.gov/conf_sc19.html

^{**} With some enhancements for "Fugaku" configuration

Monitoring for *dd* write at the 2nd layer storage

dd's write time monitoring of OSTs of each volume (preliminary)

- Periodical monitoring of write times using dd on every OST
 - Quick investigation of slow OSTs in each volume
 - Such approach effectively leads to further investigation about heavy I/O by jobs, system problems, ···

I/O write times over time with indicating by colors for several performance groups (Some of OSTs were slow under some I/O workload stress test.)

I/O BW of each OST over time before/after I/O subsystem problem indicated by vertical red colored bar (* Focusing the slowest OST indicated by orange plots)

Elasticsearch for FEFS log

- Kibana for Elasticsearch visualization (preliminary)
 - Quick trouble shooting from a large collection of log data
 - Arrangement in "Fugaku" operation is in progress based on our experiences at the K computer.

Example of evict events generated by MDS (includes both WARN and ERR levels)

R-CCS

Summary

- Three-level hierarchical storage system has been introduced at the supercomputer Fugaku.
- The 1st layer storage system plays three roles in cooperation with the 2nd layer storage system.
- Lustre-based file system (FEFS) developed by FUJITSU LIMITED has been deployed at the 2nd layer storage system based on our experiences at the K computer.
 - Many enhancements to cope with numerous demands in I/O operations are expected to play important roles at the supercomputer Fugaku.
- Monitoring activities of I/O nodes and interconnects would be also important aspect at the supercomputer Fugaku based on our experiences at the K computer.
- Monitoring/log collection environment is in progress towards stable storage system operation.
 - Alerting failures and finding root-causes
 - Finding performance bottlenecks and further optimizations, and more...